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Delivery of Tumor Associated-Antigens (TAA) 
into Antigen Presenting Cells (APC)

One of the main problems in cancer vaccination is the poor 
delivery of the TAA into APC. LM is an excellent candidate 
to improve delivery of TAA in vivo since LM is an intracel-
lular pathogen that can deliver the TAA, either as cDNA or 
as an expressed and secreted protein, directly into APC with 
high efficiency through active phagocytosis followed by lysis of 
the phagosome.1-3 APC infected by Listeria include monocytes, 
macrophages and dendritic cells (DC). However, LM can also 
induce its own internalization in various cell types that are 
normally non-phagocytic.4 These include epithelial cells, fibro-
blasts, hepatocytes, endothelial cells, as well as neurons.5-14

Prior to phagocytosis, LM binds to the surface of APC 
through specific receptors. For instance, on phagocytic cells 
LM binds to C3bi and C1q complement receptors,15-18 or to 
the macrophage scavenger receptor.19,20 However, LM can also 
bind to receptors on tumor cells such as the Met receptor for 
hepatocyte growth factor (HGF)21 expressed in many breast 
cancers22 or to components of the extracellular matrix (ECM) 
such as heparan sulphate proteoglycans (HSPG)23 and fibronec-
tin,24 both expressed in many cancers including breast cancer, 
glioma, prostate cancer and melanoma,25-28 or to E-cadherin,5 
which is expressed by breast tumors and metastases.

The bacterial ligands of these entry receptors identified to 
date are surface proteins, such as the internalins, InlA and 
InlB, the actin-polymerizing protein ActA, and p60. Also, 
putative adhesions have been identified such as surface protein 
Ami, which is similar to InlB,29-31 and lap, which is involved in 
attachment to Caco-2 cells.32 In addition to surface proteins, 
lectins may be involved in LM adhesion to eukaryotic cells 
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Because of its cytosolic localization, Listeria monocytogenes 
(LM) has long been considered an attractive tool for delivering 
tumor-associated antigens (TAA) antigens in vivo to combat 
cancer. LM directly infects antigen-presenting cells (APC) such 
as monocytes, macrophages and dendritic cells (DC), thereby 
delivering the TAA into their cytoplasm, resulting in processing 
and presentation of the antigen to the immune system. This 
activates adaptive and innate immune responses to the 
TAA, mediating tumor cell cytolysis. Recently we discovered 
additional pathways by which Listeria can be harnessed to 
induce tumor cell death, which suggest new directions in the 
development of vaccines or therapies against cancer. In one 
approach, we have used Listeria to induce immune responses 
that destroy tumor vasculature. Another new pathway involves 
selective infection of cancer cells with Listeria, followed by 
tumor cell death through the production of high levels of 
reactive oxygen species (ROS) and through Listeria-specific 
cytotoxic T lymphocytes (CTL). This review will focus on the 
most recent studies on the multiple pathways of LM and how 
they can be harnessed in the battle against cancer.
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Preclinical Studies of Listeria-Based Vaccines in 
Animal Models with Cancer

Various Listeria-based vaccines expressing TAA have been tested 
in animal models with cancer (Table 1). The first demonstra-
tion used an LM, secreting the influenza nucleoprotein (NP) as 
a fusion protein with LLO, and showed that this induced regres-
sion of established colorectal cancer, renal cancer or melanoma, 
expressing the same antigen as the vaccine, in mice, which cor-
related with NP-specific immune responses.46,47 Also, vaccination 
of mice with LM expressing human papilloma virus (HPV) E7 
as fusion protein with LLO induced regression of established 
TC-1 tumors, immortalized by HPV-16 in mice.48 Interestingly, 
vaccination with LM-E7 or LM-LLO-E7 missing the PEST  
(a sequence rich in proline, glutamic acid, serine and threonine) 
in the amino terminus of LLO, only induced slower growth of 
TC-1 tumors, despite strong immune responses to E7.48,49 The 
Lm-LLO-E7 vaccine was also tested for its ability to break toler-
ance to a self-tumor antigen using a mouse that was transgenic 
for HPV-16, E6 and E7.50 These mice develop autochthonous 
thyroid tumors, as the transgene is under the control of the thyro-
globulin promoter. Lm-LLO-E7, and a similar recombinant vac-
cine that expresses E7 fused to the listerial virulence factor ActA 
were found to delay the appearance of thyroid tumors and slow 
their growth in the E6/E7 transgenic mouse.51 Further evidence 
that Listeria based tumor antigen expression systems can break 
tolerance was provided by Bruhn et al. who showed that vac-
cination with Listeria, expressing TAA tyrosinase-related protein  
(TRP-2) induced prophylactic and therapeutic protection of mice 
from challenge by B16 melanoma tumors expressing TRP-2.52

Immunotherapy of breast tumors with Listeria-based vaccines 
expressing TAA has focused on two tumor antigens, Mage and 
HER-2/neu. Our laboratory has shown that vaccination with 
LM-LLO, expressing a melanoma-associated antigen (Mage), 
Mage-b

311-660
, completely eradicated the metastases and almost 

completely eradicated the primary tumors (90%) in a metastatic 
mouse breast tumor 4T1, expressing Mage-b.53 However, this 
dramatic effect was not solely due to Mage-b-induced immune 
responses but also due to infection and subsequent kill of the 
tumor cells by LM-LLO bacteria, as we discuss in detail below. 
Also, vaccination with Listeria vaccines expressing fragments of 
Her2/neu, fused to LLO, were effective against primary tumors 
in a syngeneic mouse breast tumor model, NT-2, expressing 
Her2/neu, which correlated with strong immune responses to 
Her2/neu.54 These vaccines were also effective against NT-2 
when implanted into a syngeneic HER-2/neu transgenic mouse,55 
which displays profound tolerance to HER-2/neu. Female 
HER-2/neu transgenic mice develop mammary tumors by about 
5–9 mo of age but the HER-2/neu expressing Listeria vaccines 
delayed the appearance of mammary tumors in these mice.56 In 
order to move these findings in breast cancer towards clinical 
applications, Seavey et al. improved the design of the Listeria-
LLO-HER-2/neu vaccines, by creating a single Listeria construct 
that expressed a chimeric gene incorporating most of the known 
HLA epitopes of HER-2/neu fused to LLO.57

through lectin-like ligands such as L-fucosylalanine, p-amino-
phenyl α-D mannopyranoside moieties.33,34 Finally, it has been 
described that LM adhesins containing α-D-galactose are 
involved in the uptake by mouse CB1 dendritic cells,2 and by 
human HepG22 hepatocarcinoma cells,35 upon recognition of 
a carbohydrate receptor at the eukaryotic cell surface.

Following adherence, LM enters the APC through phago-
cytosis, and some bacteria will escape into the host cytosol by 
perforating the phagosomal membrane through the action of 
a cytolysin, listeriolysin O (LLO).36,37 Once in the cytosol, the 
endogenously produced TAA are processed, transported into 
the endoplasmic reticulum (ER) for loading onto major histo-
compatibility complex (MHC) class I molecules and presented 
as short peptides via the MHC class I pathway, resulting in 
the activation of CD8 T-cells. However, most LM are actu-
ally destroyed and processed in the phagolysosome. Any TAA 
proteins expressed by LM in this compartment will be pro-
cessed by lysosomal degradation and loaded onto MHC class 
II molecules, resulting in the activation of CD4 T-cells. Other 
studies provide evidence that the TAA may also activate the 
immune system through cross-presentation of the exogeneous 
TAA by DC though the pathways involved are not yet well 
characterized.38

Activation of Adaptive and Innate Immune 
Responses by TAA-Based LM Vaccines

TAA peptides associated with MHC class I and II molecules, 
activate CD8 and CD4 T-cells, respectively.39,40 Boosting with 
the TAA-based LM vaccine results in activation of memory 
CD4 and CD8 T-cells to the TAA. Activation of TAA-specific 
CD8 memory CTL results in the killing of tumor cells through 
effector CTL-mediated cytolysis and may be enhanced by 
the activation of memory CD4 T helper cells.40 Also innate 
immune responses will be activated by Listeria through the 
activation of toll-like receptors (TLR) on macrophages and the 
subsequent production of interleukin (IL)-12, tumor necrosis 
factor (TNF)α and IL-1.39,40 These lymphokines attract natu-
ral killer (NK) cells and neutrophils to the infection site. IL-12 
activates NK cells and T-cells to produce interferon (IFN)γ, 
which in turn activates bactericidal properties of macrophages, 
stimulates DC to take up bacterial antigens at the site of infec-
tion, and regulates the development of CTL persistence.39,40 DC 
expressing TNFα and inducible nitric oxide synthase (iNOS) 
are essential for bacterial control.41 It is interesting that LLO-
mutants are able to induce CD8 T-cell responses, but fail to 
provide protective immunity.40,42 Also, only live Listeria-based 
vaccines provide protection while heat-killed Listeria, despite 
the induction of strong memory CD8 T-cell responses, does 
not.43 One reason could be that CD8 T-cells activated by live 
LM are cytolytic in vitro, while CD8 T-cells activated by heat-
killed LM are not.44 However, another report describes that 
cytolytic activity is not required for protection.45 These results 
suggest that other factors may play a role in the protection pro-
vided by live Listeria.
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vascular cells, which are required for tumor growth, but which 
may be more genetically stable than tumor cells.

Folkman and colleagues59 first suggested targeting tumor vas-
culature with anti-angiogenic therapy to control tumor growth. 
Blood vessels are assembled from vascular endothelial cells and 
supported by mural cells called pericytes, which stabilize the 
vessels and promote angiogenesis. Both cell types are crucial 
to vascular function but tumors in general have poor vascula-
ture with sparse pericyte coverage.60,61 Tumor cells cannot grow 
past a critical mass of 2–3 mm in the absence of a blood sup-
ply. Initially tumors co-opt existing blood vessels in tissue beds 
but as the tumors grow they must lay down their own vascu-
lature. A key molecule in this process is vascular endothelial 
growth factor receptor 2 (VEGFR2), which is also called fetal 
liver kinase 1 (Flk-1) in the mouse. Expression of VEGFR2 on 
endothelial cells and binding of VEGF-A leads to the rapid 
differentiation, proliferation and migration of these cells into 
tube-like structures. Because of this, VEGFR2 plays an impor-
tant role in tumor growth, invasion and metastasis,62,63 making 
it an attractive therapeutic target64,65 for Listeria based delivery. 

Recently, a LM-LLO-PSA construct, expressing prostate-spe-
cific antigen (PSA), but lacking the dal and dat genes (which are 
responsible for D-alanine synthesis), and ActA (involved in actin 
polymerization required for cell to cell spread) has been devel-
oped by Wallecha et al.58 to further improve its safety. Vaccination 
with this Listeria vaccine induced regression of established pros-
tate adenocarcinoma and improved survival of mice with prostate 
cancer tumors. For an overview of vaccine studies with Listeria-
based vaccines expressing tumor-associated antigens in preclini-
cal animal models see Table 1.

Harnessing Listeria to Kill Tumor Vasculature

Tumor cells can evade antigen-specific immunotherapy by  
downregulating tumor antigens, MHC class I molecules or mol-
ecules required for efficient antigen processing. We have also 
shown extensive immunoediting of CTL epitopes in response 
to active immunotherapy against a tumor antigen know to 
contribute to the tumor phenotype.56 One possible solution to 
this problem could be to direct immunotherapy against tumor 

Table 1. Re-clinical studies with listeria-based vaccines that target tumor antigens in mice with cancer

Cancer model Listeria-antigen
Origin of 
 antigen1 Tumor/mouse model Antitumor responses References

Colon, kidney LM-LLO-NP
Influenza 

virus
CT26, RENCA

Protect against tumor challenge. Regression of 
established tumors

46

Melanoma LM-LLO-NP
Influenza 

virus
B16

Regression of established tumors and lung 
metastases

47

Cervical, H & N LM-LLO-E7 HPV-16 TC-12 Regression of 48

LM-PEST+E7 HPV-16 TC-1 Established tumors 49

LM-LLO 

(PEST-)-E7
HPV-16 TC-1 Slowing of tumor growth 49

LM-E73 HPV-16 TC-1 Slowing of tumor growth 48, 49

Lm-LLO-E7 HPV-16 TC-1/E6 & E7 Tg mouse4 Regression of established tumors 50

Lm-LLO-E7 HPV-16
Autochthonous tumors in the 

E6 & E7 Tg mouse
Slowing of tumor growth 51

Lm-ActA-E75 HPV-16

Melanoma LM-TRP-23 Mouse B16 Protect against tumor challenge. 52

Breast
LM-LLO- 
Mage-b

Mouse 4T1
Eradication of metastases and 90% of primary 

tumors
53

Breast LM-LLO-Neu6 Rat NT2 Regression of established tumors 54

LM-LLO-Neu6 Rat NT2/rat HER-2/neu Tg mouse7 Stopped growth of established tumors 55

LM-LLO-Neu6 Rat
Autochthonous tumors in the 

rat HER-2/neu Tg mouse
Slowing of tumor growth 56

Lm-LLO-Neu-
chimera8 Human

NT2 & autochthonous tumors 
in the rat HER-2/neu Tg mouse

Regression of primary established NT-2 and lung 
metastases. Slows autochthonous tumor growth

57

Prostate
LM-LLOdal-dat-

actA-9 PSA
Human TPSA23 Regression of established tumors 58

1Non-mouse antigens will be recognized as foreign unless the mouse is transgenic for that antigen. 2Lung epithelial cells transformed/immortalized 
by v-Ha-ras, E6 and E7, epitopes of HPV. 3Antigen is not fused to LLO and is integrated into the chromosome. 4C57BL/6 mouse transgenic for  
HPV-16 E6 and E7 under the thyroglobulin promoter develops autochthonous thyroid tumors. 5Antigen is fused to the listerial actin polymerase, ActA. 
6Expressed as five separate fragments. 7FVB mouse transgenic for rat HER-2/neu under the MMTV promoter develops autochthonous breast tumors. 
8Complete Neu is represented as a fusion of HLA restricted epitopes. 9Host strain lacks ActA and alanine racemases. Plasmid complements racemase 
deficiency. LM, Listeria monocytogenes; LLO, ListeriolysinO; PEST, a sequence rich in proline, glutamic acid, serine and threonine in the amino terminus 
of LLO; NP, influenza nucleoprotein; TRP, tyrosine-related protein; HPV, human papilloma virus; H & N, head and neck cancer.
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Listeria can Infect and Kill Mouse and Human Breast 
Tumor Cells

Recently, we made the interesting finding that Listeria can infect 
and kill mouse and human breast tumor cells in vitro.70 After  
1 h of co-culture, 20% of 4T1 and 100% of MCF7 tumor cells 
were infected with Listeria. However, after 2–3 h of incubation 
the infection rate of both tumor cell lines was 100%. Also in 
vivo, Listeria efficiently infects primary breast tumors and metas-
tases. At this point, we do not know which receptors on the 
breast tumor cells are involved in invasion by Listeria. Possible 
candidates are HSPG or HGF, since both receptors are highly 
expressed in many breast cancers.21-23,25,26 Another candidate is 
E-cadherin, which is highly expressed in many cancers, including 
breast cancer.71 The higher infection level of the human MCF-7 
than of the mouse 4T1 may be the result of higher expression of 
the receptors on MCF7 than on 4T1.

Although the presence of bacteria in tumor cells has been pre-
viously recognized,72-74 the direct kill and immunological conse-
quences, as described below, are novel observations. For instance, 
Yu et al. have shown that attenuated pathogens such as Vibrio 
cholera, and Salmonella typhimurium, enter tumors and metasta-
ses then replicate.73 In this same study, they demonstrated that an 
attenuated LM carrying a green fluorescence protein infects PC-3 
human prostate tumor cells in a xenograft model in vivo. Very 
recently, also Stritzker et al. have shown that an attenuated LM 
infects tumor cells.74 However, in contrast to our study, they did 
not report Listeria induced killing of the infected tumors.

ROS-Mediated Tumor Cell Kill by Listeria

Bacteria can trigger apoptosis through a large variety of mecha-
nisms that include the secretion of protein synthesis inhibitors, 
pore forming proteins, or molecules responsible for the activation 
of the endogenous death machinery in infected cells.75 It is known 
that Listeria activates nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase in macrophages and neutrophils.76-78 
We have shown that Listeria induces death of 4T1 and MCF7 
tumor cells through the activation of NADPH oxidase and sub-
sequent production of ROS.70 We demonstrated the involvement 
of NADPH oxidase-mediated ROS in tumor cell death, using 
Trolox, a scavenger of OH• radicals, and apocynin or diphenylene 
iodonium (DPI). Both selective inhibitors of NADPH oxidase 
prevented 50% of the Listeria-induced tumor cell death. Using 
live cell microscopy and H

2
DFFDA or CM-H

2
XRos, we also 

demonstrated that cytosolic ROS were produced through acti-
vated NADPH oxidase, and that mitochondrial ROS were pro-
duced as well. It has been shown by others that LLO is involved in 
the rapid increase in intracellular Ca2+ levels in a macrophage cell 
line, J774.79 We found that Listeria increased intracellular Ca2+ 
levels resulting in the production of high levels of mROS.70 These 
results imply that NADPH oxidase and excessive intracellular 
calcium contribute to tumor cell death upon LM-LLO infection 
causing mitochondrial failure. An example of Listeria-induced 
mitochondrial failure in vitro and in vivo is shown in Figure 1.

However Flk-1 is a very large molecule of 1345 residues, which 
is too large to be expressed as a single molecule by Listeria. We 
thus selected three regions of the molecule, of about 200–300 
residues each that appeared to contain the majority of known 
and putative CTL epitopes for the breast tumor models with 
which we wished to test them66 and expressed these as fusion 
proteins with the microbial adjuvant, LLO. Two of these vac-
cines, which expressed the fragments 68–277 and 792–1081, 
were effective tumor immunotherapeutics in a transplant-
able breast tumor model and also reduced the appearance of 
experimental micrometastases in the lung.66 In addition, they 
promoted epitope spreading to an endogenous tumor antigen, 
HER-2/neu; reduced tumor microvascular density (MVD); 
and prevented the long-term growth of spontaneous tumors 
all without significantly affecting normal tissue angiogenesis. 
Thus targeting endothelial cells through Flk-1 could induce 
epitope spreading to an endogenous tumor protein and lead to 
tumor death.66

Pericytes can also act as targets for anti-angiogenesis immu-
notherapy.60,61 Pericytes are required for the normal function 
and integrity of vascular capillaries. Their loss disrupts vessel 
integrity leading to vessel collapse and hypoxia. Pericytes arise 
from vascular smooth muscles cells and express a glycoprotein, 
called high molecular weight melanoma associated antigen 
(HMW-MAA) in humans. HMW-MAA expression by peri-
cytes increases during angiogenesis.67 HMW-MAA is a cell sur-
face, highly glycosylated, proteoglycan that interacts with the 
extracellular matrix and binds VEGF-A, matrix metalloprotei-
nases and bFGF. It has been found in the CNS and is expressed 
by basal cell carcinoma, tumors of neural crest origin (astro-
cytomas, gliomas and neuroblastomas) and sarcomas.68 It was 
originally identified as a melanoma specific marker and is found 
on over 90% of benign nevi and melanoma lesions.68 HMW-
MAA is also known as melanoma chondroitin sulfate proteo-
glycan (MCSP) and as NG2 in the rat and AN2 in the mouse. 
We chose to explore HMW-MAA as an anti-angiogenesis tar-
get because of its high expression on pericytes. Three different 
regions of the HMW-MAA molecule were fused to LLO and 
cloned into Listeria. Only one out of the three cloned regions, 
residues 2160–2258, showed any efficacy. This Listeria-LLO-
HMW-MAA vaccine was able to slow the growth of a number 
of transplanted subcutaneous tumor cells, reduce the appear-
ance of micrometastases in a lung seeding model and slow the 
appearance of breast tumors in a transgenic mouse model for 
breast cancer.69 In addition, the vaccine induced a significant 
reduction in tumor volume, MVD and pericyte coverage, which 
correlated with an increase in CD8 T-cell infiltration into the 
tumor microenvironment. However targeting HMW-MAA did 
not appear to influence the ability of mice to lay down nor-
mal tissue vasculature during pregnancy or wound healing69 
indicating that it had few adverse effects. Taken together these 
studies suggest that Listeria can break tolerance to ubiquitous 
self-molecules and destroy tumor vasculature with little con-
sequence to normal vasculature indicating that this may be a 
promising approach for tumor immunotherapy.
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LLO protein killed 80–90% of the 4T1 tumor cells in vitro, 
while LLO∆pest did not induce tumor cell death, and that this 
could be prevented with apocynin.70 These results suggest that 
the PEST sequence is involved in the activation of NADPH oxi-
dase. Also, while LM-LLO killed 80–90% of the tumor cells, 
LM-OVA, lacking LLO, was not able to infect and kill tumor 
cells (unpublished results).

LLO also plays a central role in vivo. Vaccination with 
LM-LLO-E7 strongly eradicated E7-expressing tumors, while 
LM-E7 or LM-LLO-E7 (lacking PEST) did not, despite the 
presence of strong immune responses to E7 in all three vaccine 
studies.48,49 Our vaccine studies showed that immunization with 
LM-LLO was as effective as LM-LLO-Mage-b against 4T1 
metastases, despite the presence of strong Mage-b responses in 
the LM-LLO-Mage-b vaccinated mice.70 Also, while LM-LLO 
was highly effective against 4T1 metastases in vivo, LM-OVA 
was not (unpublished results). These in vivo studies indicate 
that LLO plays a further role in protection from tumor chal-
lenge than just the TAA-induced immune responses. Again, 
heat-killed Listeria are not protective. A favored hypothesis is that 
killed bacteria do not enter the cytosol of macrophages follow-
ing phagocytosis, thereby resulting in insufficient antigen pre-
sentation.40 However, as we discussed earlier, heat-killed Listeria 
induce CTL responses43 but CTL activated by heat-killed Listeria 
are not cytolytic, in contrast to CTL activated by live Listeria.44 
Another report describes that cytolytic activity is not required 

Tumor Cell Death Mediated by Listeria-Specific CTL

Infection of tumor cells with Listeria bacteria results in overex-
pression of listerial proteins. In addition, macrophages will be 
infected with Listeria resulting in strong CTL responses against 
the highly immunogenic listerial proteins.39,40 Therefore, it is 
expected that Listeria-specific CTL will kill the infected tumor 
cells in vivo. Indeed, depletion of CD8 T-cells in mice that 
received one preventive and two therapeutic immunizations with 
LM-LLO showed an increase in tumor growth by 52% compared 
to LM-LLO alone, suggesting that Listeria-specific CD8 T-cells, 
at least partially, contribute to tumor reduction in vivo.70 A sche-
matic view of the dual mechanism of LM-based vaccine resulting 
in tumor cell kill is presented in Figures 2A and B.

The Role of LLO in the Battle Against Cancer

LLO is required by Listeria to establish intracellular infec-
tions.6,80 As discussed earlier, LM enters the APC through 
phagocytosis, and escapes into the host cytosol by perforating 
the phagosomal membrane through the action of a cytolysin,  
listeriolysin O (LLO).36,37 A sequence rich in proline, glutamic 
acid, serine and threonine (PEST) at the amino terminus of LLO 
is thought to control the production of LLO.81 Others found that 
the γ-interferon-inducible lysosomal thiolreductase (GILT) is 
responsible for the activation of LLO in vivo.82 We found that 

Figure 1. Listeria induce mitochondrial failure. EM analysis shows mitochondrial damage in tumor cells after infection with Listeria bacteria  
(LM-LLO-Mage-b311-660) in vitro (top) and in vivo (bottom). The 4T1 tumor cell line was co-cultured with LM-LLO-Mage-b311-660 for 1 h.70 (top/left) A non-
damaged mitochondrion (green arrow) of a non-infected 4T1 cell (negative control) (top/middle and right) damaged mitochondria (red arrows) in a 
4T1 tumor cell infected with Listeria (yellow arrow). In vivo, Listeria induced mitochondrial damage in 4T1 tumor cells after one immunization with LM-
LLO-Mage-b311-660.70 (bottom/left) A 4T1 tumor cell with non-damaged mitochondria (green arrows) of a metastasis (in diaphragm) of a non-immunized 
mouse (negative control) (bottom/middle) A 4T1 tumor cell with a Listeria bacterium (yellow arrow) and damaged mitochondria (red arrows) of a 
metastasis (in diaphragm) of mice immunized with LM-LLO-Mage-b311-660; (Bottom/right) A 4T1 tumor cell with a Listeria bacterium (yellow arrow) and 
damaged mitochondria (red arrows) of a metastasis in the mesenteric lymph nodes (MLN) of mice immunized with LM-LLO-Mage-b311-660.  
Magnifications (top) x44,000, 0.5 µ sections; (bottom) x20,500, 1 µ sections.
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for protection.45 Based on comparative studies in 
several tumor models that have established the 
requirement for LLO in effective tumor immuno-
therapy mediated by Listeria, we hypothesize that 
dead Listeria with non-functional LLO cannot 
infect and cannot kill tumor cells. It is clear that 
LLO plays a crucial role in protection from tumor 
challenge and in the direct kill of tumor cells by 
Listeria. However, more research is needed to fur-
ther unravel the LLO-mediated pathways in the 
battle against cancer.

Listeria are Protected from Immune 
Clearance in the Tumor Environment

Our in vivo studies suggest that Listeria selectively 
infects tumor cells. Mice were not sick after three 
immunizations with Listeria. No pathological 
damage in tissues [liver, spleen, gastro intestines 
(GI)] was observed after three immunizations 
with LM-LLO-Mage-b

311-660
 and liver functions 

such as aspartate aminotransferase (AST) and ala-
nine aminotransferase (ALT) were unaffected.70 
Only some inflammatory spots (concentration of 
lymphocytes) were observed in the liver. One rea-
son is that our Listeria (LM-LLO) is highly atten-
uated by mutations in the virulence gene prfA, 
which strongly downregulates its pathogenicity 
and virulence in vivo compared to wild-type 
Listeria.48 This does not explain why the Listeria 
selectively infects and kills tumor cells. To answer 
this question, we co-incubated primary cultures 
of normal human and mouse fibroblasts with the 
Listeria bacteria. To our surprise, Listeria infected 
and killed the normal cells almost as efficiently 
as the tumor cells in vitro.70 However, in vivo 
this was not the case. We found evidence that 
in vivo the Listeria bacteria are cleared very effi-
ciently by the immune system in normal tissues.70 
Three d after immunization, the Listeria bacteria 
could no longer be cultured from normal tissues 
such as spleen, liver, kidneys, heart and lungs 
and gastro-intestines, while the Listeria multi-
plied in the metastases and primary tumors. We 
had shown earlier that Mage-b-specific immune 
responses are completely suppressed in the tumor 
microenvironment but not in normal tissues.53,70 
Also Listeria-specific immune responses are 
partly reduced in the tumor environment but not 
in normal tissues. Therefore, we concluded that 
Listeria bacteria in the tumor microenvironment 
are protected from clearance by the immune sys-
tem compared to normal tissue.

Figure 2. (A) ROS-induced tumor cell kill. Infection of tumor cells with LM-LLO or  
LM-LLO-Mage-b311-660 results in the activation of NADPH oxidase and subsequent produc-
tion of cytosolic reactive oxygen species (cROS), followed by mitochondrial disruption and 
production of mitochondrial (m)ROS, and results in increased intracellular Ca2+ levels, fol-
lowed by mitochondrial disruption and subsequent production of mROS.70 The high ROS 
levels, usually produced by cells to kill the intracellular bacteria, were more detrimental to 
the tumor cells than to the Listeria bacteria. The high ROS levels induced by both pathways 
resulted in oxidative stress and subsequent cell death. Also extracellular LLO protein but 
not LLO∆PEST was able to induce activation of NADPH oxidase and subsequent cell death. 
(B) Tumor cell kill mediated by Listeria-specific CTL. Immunization of tumor-bearing mice 
with Listeria bacteria (LM-LLO-Mage-b311-660 or LM-LLO) leads to infection of antigen-pre-
senting cells (APC) such as macrophages, resulting in expression of listerial and Mage-
b311-660 antigens, which subsequently stimulate cytotoxic T lymphocytes (CTL) specific for 
these antigens. As shown earlier, we found evidence that not only APC were infected with 
Listeria bacteria but also 4T1 tumor cells in vitro and in vivo.70 As a result, infected tumor 
cells express Mage-b311-660, in addition to naturally expressed Mage-b, as well as Listeria 
proteins, thereby changing poorly immunogenic tumor cells into a highly immunogenic 
target for Listeria-specific CTL that were activated by Listeria-infected APC.
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is an effective immunotherapeutic strategy that can circumvent 
the need for a known tumor antigen, since it induces epitope 
spreading to endogenous tumor antigens. We have also shown 
that Listeria can infect and kill tumor cells directly through high 
levels of ROS and through Listeria-specific CTL. In vitro and in 
vivo studies strongly suggest that LLO plays a central role in the 
multiple pathways of Listeria against cancer.

With the knowledge that Listeria selectively infects tumor 
cells, the opportunities to develop constructs that further improve 
tumor cell death are unlimited. Any gene that can induce apopto-
sis, necrosis, autophagy or other type of cell death could be cloned 
into Listeria. While CD8 T-cell responses to the TAA Mage-b 
were completely inhibited in the tumor environment, Listeria-
specific CD8 T-cell responses were still detectable. It seems that 
immune responses to a self molecule such as Mage-b are much 
more strongly inhibited than immune responses to foreign anti-
gens (Listeria) in the tumor environment. Therefore, any gene 
that is foreign and highly immunogenic could be a suitable can-
didate for cloning into the Listeria. Listeria can also be used to 
deliver drugs into tumor cells. Stritzker et al. delivered prodrug 
converting enzyme genes successfully into tumor cells in vitro 
using an attenuated Listeria.74 This Listeria expressed LLO and 
the prodrug converting enzyme genes purine-deoxynucleoside 
phosphorylase (PNP) or a fusion protein consisting of yeast cyto-
sine deaminase and uracil phosphoribosyl transferase (FCUI).

The clinical trials conducted with attenuated Listeria show 
that it is tolerated much better with less severe side effects than 
chemotherapy or radiation. Important criteria that may further 
improve the success rate of Listeria-based therapies against can-
cer in clinical trials could be to target tumors in tissues that are 
natural niches for Listeria infection. Thus pancreatic, liver and 
colon cancer, as well as brain tumors may be most suitable for 
Listeria-based therapies.
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Clinical Trials with Listeria-Based Vaccines and 
Safety Issues

Thus far, two clinical trials with attenuated Listeria-based vac-
cines have been reported. One clinical trial involves a single dose 
escalation study with an attenuated live Listeria vaccine, lack-
ing virulence factors ActA (responsible for actin polymerization 
and resultant movement within eukaryotic cells and intercel-
lular spread), and plcB (encoding a phospholipase or lecithi-
nase,83 involved in secondary vacuole escape). This vaccine has 
been tested orally (doses 106–109 CFU) in twenty healthy adult  
volunteers for its safety and toxicity. There were no positive blood 
cultures, three volunteers had temporarily abnormal liver func-
tions, and humoral and cellular responses were strongly induced 
to the Listeria. They concluded that the attenuated LM is safe in 
adult volunteers without serious long-term health sequelae.

The other clinical trial used an attenuated live Listeria strain 
with mutations in the prfA (a virulence gene required for sur-
vival of the Listeria) which expressed human papilloma virus 
(HPV) E7 protein fused to LLO.49,84 This vaccine designated as 
LM-LLO-E7, has been tested in fifteen cancer patients (doses 109 
to 1010 CFU) with advanced carcinoma of the cervix in a Phase 
I/II clinical trial. All patients had a history of failed surgery, che-
motherapy and/or radiation. Vaccinations with LM-LLO-E7 
were at least 30 d after the last treatment with chemotherapy or 
radiation in order to retain immune competence. Immune com-
petence in the patients with remaining tumor was confirmed by 
a delayed hypersensitive (DTH) screening panel, and Eastern 
Cooperative Oncology Group (ECOG) performance status ≤2 
(Karnofsky index >60%). All patients received two immuniza-
tions intravenously with a 3-w time interval and Ampicillin 5 d 
after each vaccination. Vaccination resulted in flu-like symptoms 
in all patients. Six out of 15 patients showed grade 3 side effects. 
Liver functions such as AST and ALT increased after the first 
immunization, but went back to normal levels at the end of the 
study. The study concluded that the LM-LLO-E7 vaccine was 
safe in cancer patients with advanced adenocarcinoma of the cer-
vix paving the way for a Phase II clinical trial.

Concluding Remarks and Future Prospects

One conclusion that can be made from the preclinical studies 
is that Listeria has multiple functions that are particularly use-
ful to combat cancer. Listeria-TAA-based vaccines are able to 
activate TAA-specific CTL, mediating tumor cell cytolysis and 
NK cells that may kill tumor cells as well. Targeting tumor vas-
culature using Listeria that expresses pro-angiogenic molecules 
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